Germanischer Lloyd

Technology and Fleet Modernization – Benefits for the Investor – Capital Link, New York, 25th of March 2011

Dr. Hermann J. Klein

www.gl-group.com

Content

- Economy of Scale
- Efficiency of Ship Newbuildings
- Fleet Modernization / Fleet Optimization

Economy of Scale

The size of Boxships is further increasing

- technical limits operational limits Hapag-Lloyd - commercial limits and optimum

14.000 TEU Container Ship MSC Danit of MSC

Largest Container Ship of the World The "new" Post-Panamax Vessels with B = 51,2m Builder: Daewoo Shipbuilding & Marine Engineering, Korea

14.000 TEU Container Ship Loa = 398,0 m, B = 54,2 m, H = 27,7 m

The New Panama Canal

Pana Max – Today and Tomorrow

The proposed new Panamax vessel has a capacity of about 12,000 TEUs

Container – Eye on Panama Canal & US East Coast

Currently, Panama Canal locks and draft restrictions at ports repress Megaboxer activity at USEC

Container – Eye on Panama Canal & US East Coast

• Opportunity for Megaboxer - Expansion of Panama Canal & dredging at USEC ports

Economy of Scale in Transport

Content

- Economy of Scale
- Efficiency of Ship Newbuildings
- Fleet Modernization / Fleet Optimization

Propulsion Assistance by Wind Kite

Propulsion Assistance by Flettner Rotor

Propulsion by Fuel Cell and Hydrogen

Propulsion by Solar Power

HFO versus LNG

- Pressure tanks type C, maintain pressure using boiler
- Sealed tank space, no pumps inside, no access during operation
- Gas preparation with LT-cooling water
 in separate room
- Emergency venting t.b.d.
- Minimum distance to outer hull: 760mm

Historic records of fuel prices

NG: Natural Gas, LNG: Liquefied NG, HFO: heavy fuel oil (IFO 380), MGO: marine gas oil, BTU: British thermal Unit = 1,06 kJ

Ship Design - Best Relation

Load Optimization

Energy Consumption

http://www.omega-ems.com/images/13635-Hvad-skal-maales---UK.gif

Fuel Oil Prices

Bunker 380 cst, Rotterdam Yearly Average prices, per metric ton

\$ per Tonne

Example 9.000 TEU Container Ship

• ca. 200 t Fuel/Day x 365 Days = 73.000 t Fuel/Year

- 2004: 73.000 t x 150 US\$/t = 10,95 Mio US\$
- 2007: 73.000 t x 492 US\$/t = 35,92 Mio US\$
- 2011: 73.000 t x 590 US\$/t = 43,01 Mio US\$

x 25 Years = 1.077 Mio US\$

Capital Link, New York | March, 25, 2011 | No. 21

Germanischer Lloyd

The future – climate and the environment

Shipping CO₂-emissions in a global context

Figure 9-7 – Emissions of CO₂ from shipping compared with global total emissions Deforestation contributes by 17% to global GHG emissions

Correlation Fuel Costs and CO₂-Emission

Handelsschiffe nutzen heute meist <u>Heavy Fuel Oil</u> (HFO) als Brennstoff für die Hauptmaschinen.

Für HFO mit einem Kohlenstoffmassenanteil von 85% liegt die spezifische CO_2 -Emission bei (ca.) 3,114 t / t HFO.

Possible Development of Fuel Costs

Source: GL research. The analysis excludes inflation effects.

Opportunity for Savings

Source: GL research and GL analysis

Options for Improvement

Fluid dyna	mics							red	digits – s
1.1.1	Main dimensions								
1.1.2	Lines			4 4 4	0.5.4	22	440		111
1.1.3	Bulbous bow			1.1.1	3.5.1	2.3	1.1.3		1 1 2
1.1.4	Coating			1.1.2	3.5.2		3.5.1		2.3
1.1.5	Windage			1.1.3	3.1				2.5
1.1.6	Alignment of appendages		high	2.4	3.4				2.4
1.1.7	Rudder		-	2.4	3.5.2				
1.1.8	Sea margin			3.1					
1.2.1	Propeller tip			5.4					
1.2.2	CRP			1.1.4	2.1	1.2.2	1.1.4		1.2.1
1.2.3	PBCF			1.1.6	2.2		1.1.6		1,2.2
1.2.X	PID			1.1.7	3.3		1.1.8		1.1.7
Systems			mid	1.2.1			2.1		
2.1	Periphery systems	ain I		1.2.X			2.2		
2.2	Other e-driven systems	ge					3.3		
2.3	Additional energy sources	cy			4.0.0		4.2.1	445	445
2.4	Main/Aux Engines	ien			1.2.3		1.2.	1.1.5	1.1.5
Operations		Effic							
3.1	Trim & Draft	_	low			/			
3.2	Level speed during vovage								
3.3	Routing								
3.4	Awareness								
3.5.1	Hull maintenance				low	mi	d	hi	ah
3.5.2	Engine maintenance								
		Required investment							

green digits – new building red digits – ship in service

Benefits for the Investor

	Operator	Owner	Designer	Financer
Competitive advantage	Û	Û	Û	Û
2 Resale value	Û	Û		Û
3 High return on investment	Û	Û		
4 Fuel saving	Û			
5 Higher charter rates		Û		
6 Easier/cheaper financing	$\overline{\mathbf{x}}$	A		Û
7 Green image	Û	Û	Û	Û
8 Crewing (noise, vibration)	$\overline{\mathbf{x}}$			
9 Maintenance monitoring	$\overline{\mathbf{x}}$			
pplicability of criteria: 🏠 high 🕢 medium	I	I	I	I

4.400 TEU Container Vessels – Fuel Efficiency

	2002	2010	2018
Fuel costs*	17.500	40.500	60.000
1 yr charter rate \$/day	23.125	20.000	22.000
Ratio fuel costs / charter rate	0,75	2,0	2,7
Efficiency improvement**	10%	10%	10%
Daily total savings*** [in US\$]	1.750	4.000	6.000
Yearly total savings*** [in US\$]	500.000	1.200.000	1.800.000
Daily savings in % of charter rate	7,5%	20%	27%

* Assurantidas for hunker consumption, Masset speed and stilling days per year: 130 tonnes per day/24 knots/300 days (2002), 88 tonnes per day/21 knots/300 days (2010), 88 tonnes per day/21 knots/300 days (2018).

** Estimated reduction of HFO Bunker consumption, based on GL efficiency products/services.

*** Savings due to a decrease of yearly fuel costs.

Content

- Economy of Scale
- Efficiency of Ship Newbuildings
- Fleet Modernization / Fleet Optimization

Key success factors:

Design optimisation

Efficiency

Minimizing costs

- Design will be a key lever and future ships can be expected to be significantly more efficient and thus competitive than those designed in the past and sailing today. Comprehensive/holistic solutions are required to achieve significant improvements
- An additional cost-reduction potential of 5 -15% can be generated through FutureShip's operations oriented tools – focusing on fuel efficiency – without impacting the operational profile of a vessel
- In an increasingly competitive industry, minimizing bunker costs will be a key success factor. Slow steaming has been a first step but will not be sufficient moving forward

Newbuilding concepts need to target superior efficiency to achieve sustainable competitiveness

- Already significant differences in efficiency between similar ships today
- Superior designs with lower EEDI resulting into lower costs and improved competitiveness

2-step systematic optimization of new design

- Reduction Cost/'000 container miles -

Reference Case "ECO Solutions" / Schulte, 9.000 Teu vessel

HIP OWNING & SHIP MANAGEMENT

Bernhard Schulte

Client's starting point

- Shipping companies Bernhard Schulte and Costamare ordered container vessels at a Chinese shipyard
- The original design of the hull lines was performed by a major Chinese ship designer
- In order to increase the vessel's competitiveness owners decided to subject hull lines to a computational optimisation process aiming on minimization of wave resistance and improved arrangement of propeller and rudder

Our service

Based on the existing design hull line constraints were agreed with design office

- Hull lines and propulsion arrangement were optimised by means of CFD analysis
- Towing tank tests were performed at HSVA in order to verify the calculated results and to establish a basis for comparison with the original design

Results

- Total resistance could be reduced by more than 10%
- Hereby owners attained the possibility to reduce main engine's MCR which leads to
 - Daily fuel oil savings of app. 30 tons
 - Lube oil savings of about 30 tons per year
- The optimisation will pay within a period shorter than one month

9000TEU Container Vessel

Tank Test Results

Base Line Modell

Post Modell

ECO Assistant: State of the Art Tool

- Key arguments:
 - proposes optimal trim for several thousand operating conditions
 - considers ballast water requirements
 - state of the art methodology
 - no installation needed

- Benefit: 3-6% documented
- Cost: 45k€ (+20% for sister vessel) changes upcoming

ECO-Assistant: Fuel saving of 3.4% (respectively 6.7%) verified through 'real' consumption data over 5 month period

- Consumption could be reduced by 3,4% in laden and 6.7% in ballast condition
- This translates into fuel saving of 340t HFO or \$160k per year

Germanischer Lloyd

Thank you for your kind attention!

Dr Hermann J. Klein

Tel: +49 40 36149 321 Fax: +49 40 36149 936 Email: hermann.klein@gl-group.com

www.gl-group.com