DNV·GL

MARITIME FORECAST TO 2050

As part of Energy Transition Outlook 2019

11th Annual Capital Link New York Maritime Forum – October 15th, 2019

Suite of publications available on eto.dnvgl.com

Maritime Forecast to 2050 in a nutshell

The foundation for the outlook is the IMO GHG strategy

Units: GHG emissions

Demand for seaborne transport will grow 39% by 2050

World seaborne trade: tonne-miles

Average growth of 2.3%/yr to 2030, then 0.3%/yr towards 2050

New 'CO₂ Barometer' signals shipping decarbonization is off course

- 1. World fleet CO₂ emissions
- Slight increase in CO₂ emissions in recent years

2. Alternative fuels uptake

- 0.3% uptake on ships in operation
- 6% for newbuildings

3. Regulation

 Current policy scenario will not meet the IMO ambitions without further policy

The **CO₂ Barometer** provides a high-level decarbonization status in the form of a **`transition pressure level**'

Decarbonization options for shipping

- Significant GHG reduction can be achieved by technical and operational measures
- Up to 100% GHG reduction can only be achieved with alternative fuels. Barriers to implementation includes:
 - Cost
 - Availability and infrastructure
 - Onboard storage

Decarbonization options for shipping - alternative fuels and energy sources

 Three main "family types" of fuels, categorized based on energy source.

Similar fuels can originate from different energy sources, but lifecycle emissions and cost vary greatly

A given energy converter (e.g. combustion engine) may apply many alternative fuels

Alternative fuels must evolve over time to increase marked penetration

It took LNG around 20 years to climb all steps. To reach the IMO targets, carbon-neutral fuels must mature faster!

Fuel flexibility and bridging technologies – the three pillars

Bridging technologies can facilitate the transition from traditional fuels, via fuels with lower carbon footprints, to carbon-neutral fuels

Fuel mix towards 2050 in the 'design requirements' pathway

In all three pathways modelled, liquefied methane (both fossil and non-fossil) ends up dominating the fuel mix.

What is the future competitiveness of your ship?

DNV GL has developed a model to test **competitiveness** under different scenarios – taken into account:

- Fuel & technology
- Regulations
- Risks related to the market

Competitiveness of individual **ship designs** is assessed using:

- Break-even cost
- CO₂ emissions

12

What is the exposure to carbon risk under different scenarios?

DNV GL © 2019

Key findings

- World seaborne trade will grow gas will grow more
- Shipping decarbonization is off course
- Uptake of alternative fuels is picking up, but needs to breakthrough to the large ocean going ships
 - In addition to LNG, carbon-neutral fuels will be needed towards 2050
- Bridging technologies and fuel flexibility can smooth the transition from traditional fuels
- Ships should be future proof in a changing environment, securing competitiveness and mitigating carbon risk
- We have tools to support policy makers, ship owners and other stakeholders

Thank you for your attention

Sergio Garcia Regional Business Development Manager – Maritime Americas Sergio.garcia@dnvgl.com +1 832 392 0030

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

14 DNV GL © 2019

