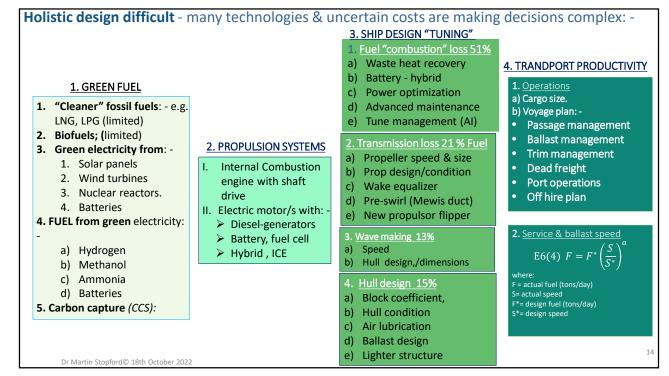
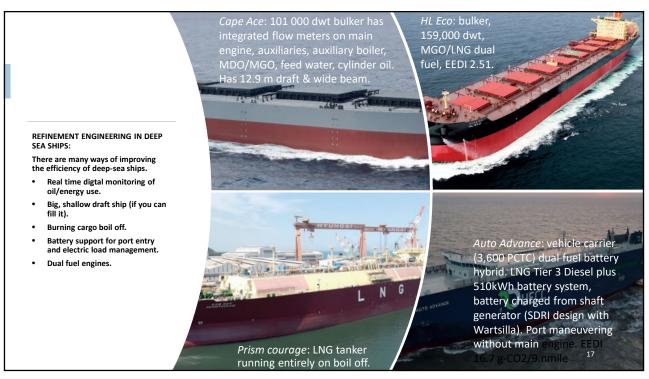


2019 Investment World Fleet 2019 Rough investment required 2020-2050 \$ Bi 6T \$ billion \$/GT Fleet M GT No Replacement Growth(1) Expansion Total 0 \$12.3 878.6 325.0 11,095 \$286 -25% -\$71 \$214 4 \$11.1 637.9 478.0 11,820 \$305 67% \$204 \$509 4 \$14.2 1918.9 82.7 2,039 \$159 149% \$236 \$395 1 \$6.7 943.7 243.0 5,326 \$229 126% \$289 \$518 7 \$18.9 700.0 23.2 448 \$162 120% \$195 \$357) Expansion -\$71 \$214 6% \$204 \$206 \$236 \$235 12% \$289 \$518 15%
0 \$12.3 878.6 325.0 11,095 \$286 -25% -\$71 \$214 4 \$11.1 637.9 478.0 11,820 \$305 67% \$204 \$509 4 \$14.2 1918.9 82.7 2,039 \$159 149% \$236 \$395 4 \$6.7 943.7 243.0 5,326 \$229 126% \$289 \$518	-\$71 \$214 6% \$204 \$509 15% \$236 \$395 12% \$289 \$518 15% \$195 \$357 10%
4 \$11.1 637.9 478.0 11,820 \$305 67% \$204 \$509 4 \$14.2 1918.9 82.7 2,039 \$159 149% \$236 \$395 4 \$6.7 943.7 243.0 5,326 \$229 126% \$289 \$518	\$204 \$509 15% \$236 \$395 12% \$289 \$518 15% \$195 \$357 10%
\$14.2 1918.9 82.7 2,039 \$159 149% \$236 \$395 \$6.7 943.7 243.0 5,326 \$229 126% \$289 \$518	\$236 \$395 12% \$289 \$518 15% \$195 \$357 10%
l \$6.7 943.7 243.0 5,326 \$229 126% \$289 \$518	\$289 \$195 \$357 10%
	\$195 \$357 10%
['] \$18.9 7000.0 23.2 448 \$162 120% \$195 \$357	
	-\$106 \$319 9%
) \$7.1 7100.0 59.9 8,977 \$425 -25% -\$106 \$319	
9 \$3.9 4333.3 20.6 7,878 \$89 120% \$107 \$196	\$107 \$196 6%
5 \$5.5 3666.7 147.5 49,888 \$541 70% \$379 \$919	\$379 \$919 27%
2.1 \$79.7 1,529.8 1,379.9 97,471 \$2,196 34% \$1,233 \$3,429	φ313 φ313 £170
2 Col 7 = (Col 5 x Col 4)/1,000 Col 9 = (Col 5 x Col 8 x Col 4)/1000 Col 10 = (Col 5	\$1,233 \$3,429 100%
\$3.9 4333.3 20.6 7,878 \$89 120% 5 \$5.5 3666.7 147.5 49,888 \$541 70%	


3. MARITIME TECHNOLOGY – WHERE ARE WE NOW WITH TECHNICAL SOLUTIONS? Investment not easy – holistic approach needed. with many technologies and uncertain costs, commercial decisions will be difficult.

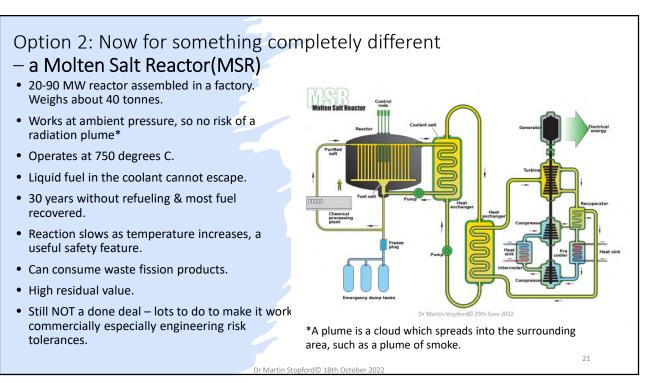
DEEP SEA TRADES – "dual fuel" engines available for deep sea trades, mainly ammonia & methanol


SHORT SEA SHIPS: electric propulsion becoming viable over shorter distances. Battery costs falling.


CLOSING THE GREEN ENERGY GAP: still searching for the best way to produce LARGE NUMBERS OF ZERO CARBON SHIPS IN 2030s and 2040s

13 Dr Martin Stopford© 18th October 2022

Foi	ır Fuel Options: metha	anol, hydrogen,	amn	noni	a and	nuc	lear				
Tab	le 1: Liquid fuels which are, or co all numbers relate to liquid product	uld be, used to power r	nerchar	nt ship		HEMIC	-	UR GR	EEN FU		FIONS SSION (1)
_			E	NERGY+	CARBON EI	MISSI	ONS		ARBON		
Ref			HFO	LNG	LPG	LEG	Methanol	Hydro- gen	Amm- onia	ų	Iranium
	memo: Chemical composition	(Composi	C ₂ H _{6,}	C₃H ₈	C_2H_6	СНЗОН	H2	NH3		U235
1	Boiling point	°C at 1 bar pressure	150	-166	-26.2	-89	65	-253	-33		4131
2	Energy density by volume (per litre)	MJ/litre	41.0	21.6	24.9	53.2	15.7	9.2	15.7	6	7,443,012
3	Energy density by weight (per kilogram)	MJ/kilogram	41.8	48.0	46.1	51.9	19.7	120.2	22.5		3,898,440
4	Auto Ignition	Temp °C to ignite	398	650	428	472	450	535	630		NA
5	Ratio of liquid volume to HFO*	based on m ³ per kg	1	1.85	1.6208		2.54	4.33	2.55		0.05
6	Flammable range	% vol in air to burn		5-15%	8.9-18.8%		5.5-26%	4-74%	15-28%		N/A
7	Carbon content per kg	%	88%	75%	82%		38%	0%	0%		0%
8	CO ₂ emissions/kg when burnt	Kg CO ₂ per Kg fuel burnt	3.11	2.75	2.99		1.37	0	0		0
9	CO 2 emissions/kg % reduction	Compared to HFO	-	12%	3%		56%	100%	100%		100%
10	CO ₂ emissions per kWh output	kg CO ₂ kWh	0.27	0.21	0.24		0.25	0	0		0
11	CO 2 emissions reduction/ kWh	kg CO $_2$ /kWh less than HFO	-	24%	15.60%		11%	100%	100%		
12	Low flashpoint fuel		Yes	Yes	Yes		Yes	Yes	No		N/A
(1)	NUCLEAR FISSION: nuclear reaction i	n which a heavy nucleus sp	lits spon	taneou	sly or on in	npact	wi <mark>th anot</mark> ł	ner parti	cle relea	sing en	ergy
		Dr Martin Stopfor	d© 18th O	tober 20	22					1	5



CLOSE THE "		RATEGY – KEY ISSUE IS TO N THE 2030s AND 2040s
SHORT-TERM STRATEGY: NOW FAIRLY CLEAR	2020s-DEEP SEA: slow speed diesel engines with dual fuel capability (LNG, hydrogen, methanol, ammonia etc).	2020s -SHORT SEA- electric propulsion "interesting" over shorter distances. Battery costs falling.
LONG-TERM STRATEGY: TWO OPTIONS or CHOICES?	Option 1: RENEWABLES Build a new generation of ships integrating all the existing technology into zero carbon vessels.	Option 2: NUCLEAR Develop nuclear fission as on- board power for the biggest ships and to provide bunker supplies for electric ships

Option 1: RENEWABLES -NYK Super Eco Ship 2050 illustrates one way to go

- 1. Powered by hydrogen fuel cells using renewable energy.
- 2. Waste heat recovered from fuel cells & solar power.
- 3. Hull weight reduced by light superstructure materials.
- 4. Computer-controlled gyro stabilizers.
- 5. An air-lubrication & auto hull-cleaning in port.
- 6. Propellers replaced by flapping foils like dolphins.
- 7. Maintenance is managed through digital twins.
- 8. Route planning at a fleet level from shore.
- 9. Automatic mooring and ship-to-ship cargo handling

In previous "revolutions" entrepreneurs drove change. Are we in revolution territory today? It's a question to take seriously. Table 1: Ten of merchant shipping's top entrepreneurs Name Date Innovation 1 Alfred Holt 1855-65 Efficient marine steam engine 2 Ivor Knudsen 1898-1913 Marine diesel engine 3 Gustav Eriksen 1920-49 Last commercial sailng ship 4 Olaf Wallenius (OW) 1954-1970 Car carrier/deep sea roro 5 Jacob Stolt Nielson 1955 on Chemical parcel tanker 6 Kristian Gerhard Jebsen 1958-70 Open hatch bulk carriers 7 D. K. Ludvig Late 1960s **Combined carrier** 8 Dr Hisashi Shinto 1970s Shipbuilding construction 1980 9 Henri Kummerman 1950s Hatch covers 10 Malcolm McLean 1950s-60s Containerised sea transport Source: compiled by Martin Stopford on the back of an envelope Dr Martin Stopford© 18th October 2022

Malcolm McLean, the entrepreneur who made containers work at sea, had to do a staggering amount of work. It took about 12 years to launch the first transatlantic service. Starting with a few old tankers, he : -

- 1. Believed that containerisation needed a complete change in ships, organisation and cargo systems.
- 2. Endlessly calculated, quantified and monitored total cost savings by containers.
- Built a new organisation, hiring top technical people to design & test containers, cranes, ships, cell guides. Also to sell cargo and monitor fleet performance etc.
- Supervised all detail for first 12 years, constantly "walking around" to check what was going on. "all staff started in the freight yard"
- 5. Persuaded regulators (initially ABS and the coast guard) and the unions that containers were safe.
- 6. Raised capital and managed the competition.
- 7. Stuck with it, year after year, even when things went badly, which was quite often.

artin Stopford© 18th October 20

