Navigating the Alternative Fuels Landscape – Impact on Fleet Renewal

Vassilios Kroustallis | March 2023

This presentation and its content is intended exclusively to the person to which it is addressed. Any use, distribution, or disclosure is expressly prohibited.

Maritime Decarbonization in 2023: What to Expect

MEPC 80

- Further CII Corrections
- Market Based Measures
- Fuel Life-Cycle Assessment Guidelines

Alternative Fuels

- Production Infrastructure
- Bunkering infrastructure
- Biofuels Carbon Factor
- Demand from Other Industries

Green Ecosystem

- Green Shipbuilding and Labeling
- Green Corridors Development
- Energy Efficiency Technologies Retrofits

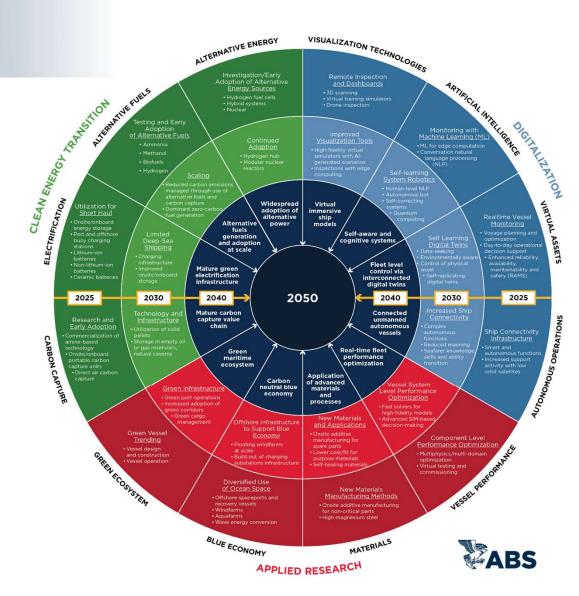
2023

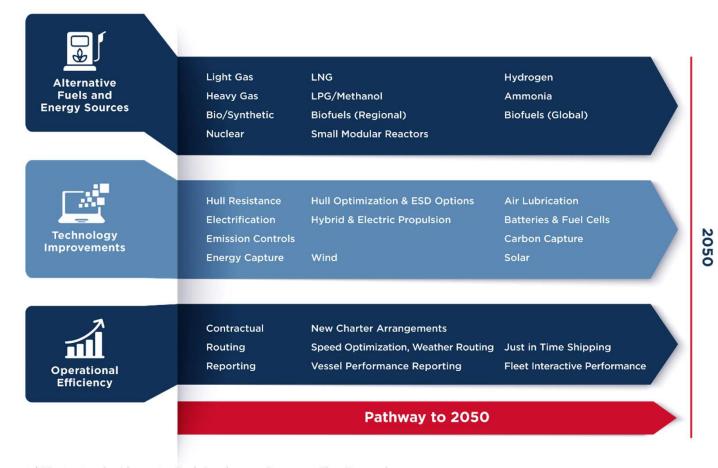
MARITIME DECARBONIZATION

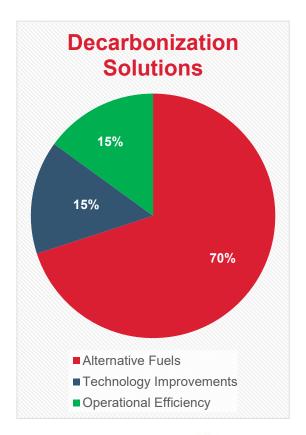
New Technologies

- Carbon Capture
- Air Hull Lubrication
- Wind Assisted Propulsion
- Al-Powered Performance Analytics and Improvement

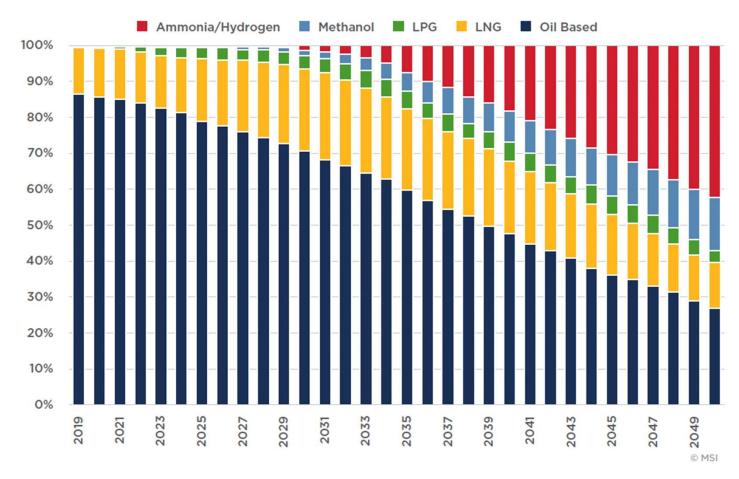
Innovation Outlook


Sustaining innovation for


Net-Zero Carbon Environment


enabled by a

Decarbonization Solutions



^{4 |} Navigating the Alternative Fuels Landscape - Impact on Fleet Renewal

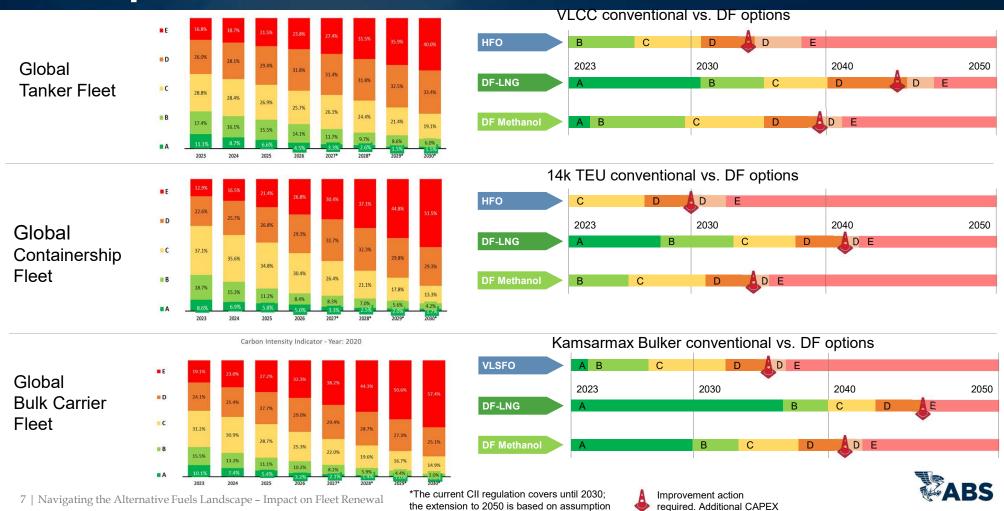
The Future Fuel Mix

What is the Expected Impact from CII?

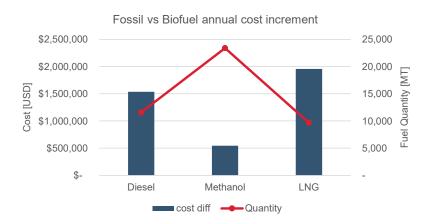
Increased awareness for ship performance (owners, charterers, operations and financial institutions)

Compliance expected with low OPEX and CAPEX solutions: speed reduction, scheduling of vessels, energy management

High CAPEX and OPEX solutions are not employed due to regulatory uncertainty and how market will use CII


CII is the current common language for carbon intensity.

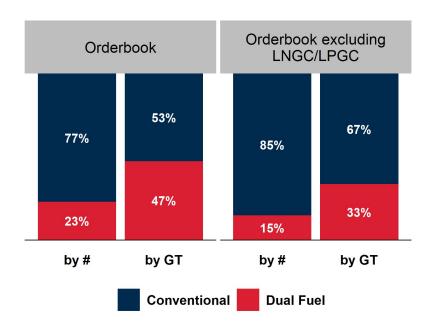
Non-IMO-regulated players impact CII but are not directly regulated by it: ports, channels and canals, charterers, brokers and markets in general


CII Impact

Biofuel's Effect on CII

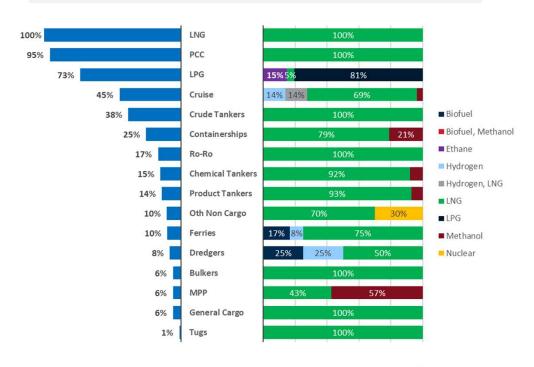
- Biofuel blends may reduce the carbon factor for TtW CO₂ calculations for CII
- CII based on TtW emissions
- S_F to be prorated for biofuel blends
- Case Study: VLCC tanker

		MEPC 76 Reduction factor - 2%								Assumed Reduction factor - 2%																		
Vessel	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
HFO	D	D	D	D	D	D	D	Е	E	E	E	E	E	E	E	E	Е	E	E	Е	E	E	Е	E	E	E	E	Е
Biodiesel (B30)	Α	Α	B	В	В	В	В	С	С	С	С	С	С	D	D	D A	D	D	D	Е	Е	Ε	Е	Е	Е	Е	Ε	Ε
																4												


	MEPC 76 Reduction factor - 2%									Assumed Reduction factor - 2%																		
Vessel	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Methanol	С	С	С	D	D	DA	D	D	D	D	Е	E	Е	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	E	Е
Bio-Methanol (30%)	Α	Α	Α	Α	Α	A	В	В	В	В	В	С	С	С	С	С	D	D	DA	D	D	Е	Е	Е	Ε	Ε	Е	Е

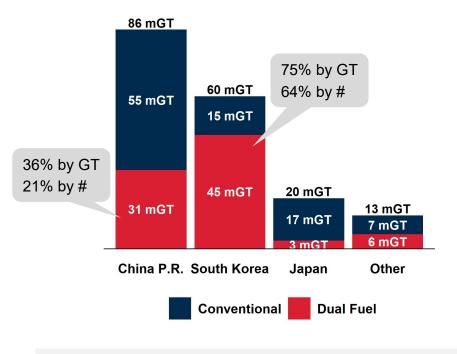
	MEPC 76 Reduction factor - 2%								Assumed Reduction factor - 2%																			
Vessel	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
LNG	В	В	В	В	С	С	С	С	С	С	D	D	D	D	D	D	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	E	Е
Bio-Methane (30%)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		В	В	В	В	С	С	С	С	D	D	DA	D	Е	Е	Е

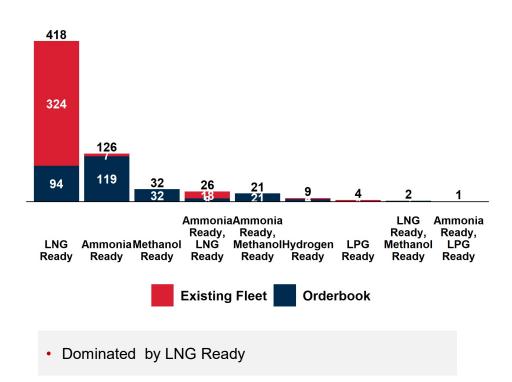
Dual-Fuel Orderbook


What is the Dual-Fuel share?

- · LNGCs and LPGCs readiness for dual-fuel
- Focus on deep sea larger vessels, Short sea/Coastal vessels and Passenger

What is the Alternative Fuel Mix?

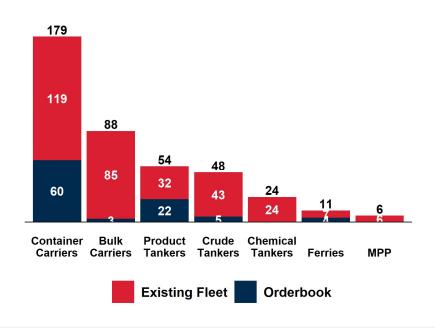

- Mostly LNG ... 81% of the orderbook ... 86% exc. LNG/LPG
- Followed by Methanol with 6%... 10% exc. LNG/LPG


Dual-Fuel Orderbook

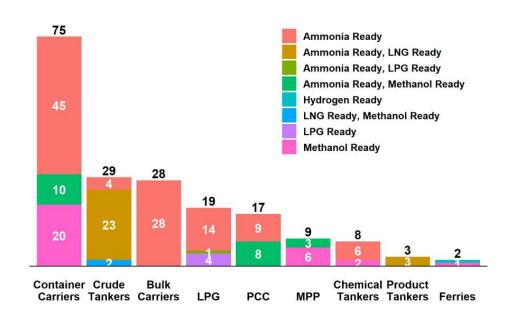
Where are Dual-Fuel Vessels built?

- · Excluding Gas Carriers, in terms of GT:
 - 53% of Korea orderbook is dual-fuel
 - 29% of China orderbook is dual-fuel

Dual-Fuel Ready... Which alternative fuel?


10 | Navigating the Alternative Fuels Landscape – Impact on Fleet Renewal

Data source: ABS, IHS Fairplay, Clarksons January 2023


Alternative Fuel Ready

LNG Ready.... Which vessel types?

 Dominated by Container Carriers followed by Bulk Carriers (Chinese built ore carriers).... Crude/Product Tanker rising

Other Alternative Fuel Ready trends....

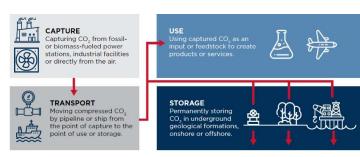
 Alternative Fuel Ready of choice is LNG... with emerging alternative fuels... Ammonia and Methanol (container carriers)

Carrying Low/Zero Carbon Fuels as Cargo

Ammonia

- 29% of the existing fleet of LPGCs capable of carrying ammonia
- 33% of the new orders are ammonia carriers

Existing Fleet


Size	Fleet	Ammonia	%
< 5,000 cbm	597	69	12%
5,000 – 29,999 cbm	474	227	48%
30,000 - 64,999 cbm	133	124	93%
> 65,000 cbm	353	31	9%
Total	1557	451	29%

Hydrogen

- Reaching the required temperature of -253°C is a technical challenge
- Requires high amount of energy for liquefaction
- Any degrading of insulation results in rapid pressure rise, boil-off and required venting
- Trend shifting to cryo-compressed hydrogen
- Cryogenic temperatures required but less so (~ -190°C)
- High pressure (250-350 bar) allowed offers flexibility with handling boil-off

 CO_2

 LCO₂ must be carried within a temperature and pressure range that will prevent formation of solid CO₂

Multi-Gas Carriers

A multi-gas options strategy would need to effectively address all the individual risks that might arise from having two or more gases on a vessel.

Potential design of such a carrier will be analyzed taking into consideration:

- Applicability of international regulations and codes and potential conflicts among cargoes
- Material availability and compatibility with all potential cargoes (adequate properties)
- Individual gas characteristics (flammability, toxicity, corrosivity, etc.)
- · Constraints due to gas characteristics
- Increase in overall cost due to engineering design constraints (for instance LCO₂ is carried only in Type C tanks)
- Technology development and readiness to handle various cargoes (reliquefaction plants, cargo pumps and compressors)
- Hazardous areas and ventilation requirements

Key Takeaways

- 1 Asia Leading New Orders
- 2 China the Major New Construction Area
- In the Coming Years Expect Increased Number of New Orders with New Technology Ships
- 4 Which Fuels in the Next Decade?
 - Big Ships:
 - Conversional Fuels
 - LNG
 - Methanol
 - Ammonia
 - Small Ships: All Fuels, Batteries, Fuel Cells Hybrid, Hydrogen

- 5 Emerging of Carbon Capture and LCO₂ Carriers
- 6 Emerging of New Fuels as Cargoes (Methanol, Ammonia, Hydrogen and CO₂)
- 7 Dual-Fuel Ships
 - Almost half of the orderbook is dual-fuel ships and 81% of this is LNG
 - Most of the dual-fuel ships are built in Korea – 53%
- 8 Not Possible to Replace the Global Fleet Until 2050. Retrofit to Play a Significant Role.
- 9 Increasing Regulatory and Compliance Risk (Compliance Cost)

Thank You

www.eagle.org

