SHIPBUILDING TRENDS – IMPACT ON FLEET RENEWAL & FUEL LANDSCAPE

Fedon Tomazos

Director

Cass Technava Maritime

Table Of Contents

Alternative Fuel Mapping

- i. VLSFO, Methanol, Ammonia, LNG, HFO & Scrubber or CCS
- ii. Newbuilding Orders With Alternative Fuels
- iii. Well-to-Wake , Tank-to- Wake Emissions & Alternative Fueling

Newbuilding Trends & Shipyards Outlook

- i. Newbuilding Price Index
- ii. Orderbook
- iii. Trend Of Newbuilding Prices
- iv. World Fleet Age Profile

B cass technava

v. Development of Active Chinese Shipyards

Alternative Fuels Mapping

	VLSFO (benchmark)	Methanol	Ammonia	LNG	HFO & Scrubber	ccs
Vessel CAPEX	1	1,1~1,2 (e.g Kmax +8 mio \$)	1,2 (?)	1,15~1,25 (e.g Kmax +9 mio \$)	1,02~1,05 (e.g Kmax +2 mio \$)	1,2~1,3 (?)
Vessel complexity (NB & Operation)	small	medium	high	medium	small	high
Changes on NB scope (overview)	-	Design, M/E, A/Es, Boilers FSS, Piping, Tanks Nitrogen, Safety related	Design, M/E, A/Es, Boilers FSS, Piping, Tanks, Semi-Cryogenic Nitrogen, Safety related	DF Engines & Boilers FGHS, Piping, Tanks, Nitrogen, Safety related	well proven	Design, extensive scope
Tanks' Capacity	1	2,5	2,8~3,3	1,8~2,2	1	?
Tank-to-Wake GHG	1	0,9	~0,05	0,75~0,85	~1	??~0,7
Well-to-Wake GHG (approx.)	1	Gray = 1,14 Blue = 0,7 Green = 0,05	Gray = 1,5 Blue = 0,4 Green = 0~0,2 (N20 TBA)	Gray = 0,85~0,95 Blue = 0,75~0,85 Green = 0,05~0,15	~1	??~0,7
Fuel cost 2025 USD/GJ (est.)	10~15 (=420~630 \$/tn)	Blue = 40~70 Green = 40~?	Blue = 20~30 Green = 30~60	Gray = 10~30 (??) Green = 30~??	7~10 (=300~450 \$/tn)	HFO & Solvents (?)
GHG Compliance Pathway	2030 √(speed red.) 2040-2050 X (need drop in of e- or bio-fuels or CCS)	Gray: X Blue, then Green : 2030-2050 √	Gray: X Blue, then Green : 2030-2050 √	Gray: 2030 ✓ 2050 ✓ with CCS Green: 2050 ✓	2030 √(speed red.) 2040-2050 X (√ with CCS)	potentially 2050 √, depending on % of CCS
Fuel availability & Bunkering infrastracture	-	Green : low avail. Infrast. can be adapted	Green : low avail. Infrast. challenging due to toxicity	proven, medium avail.	24 •	

Alternative Fuels Mapping

	VLSFO (benchmark)	Methanol	Ammonia	LNG	HFO & Scrubber	ccs
General Comments:	Ţ	Existing infras. for HFO & MGO could be adapted. Liquid at ambient temp.	Engines' availability 2025 onwards Highly Toxic, Flammable &	Volatility on bunker cost. Mature tech. (bunkering infrast, engines' & machinery) Methane Slip (GHG) Liquid at -162oC (1atm)	well proven, Fuel spread attractive, HFO available, need CCS towards 2050 GHG pathway	LNGCs & LNG-fueled vsls ideal first candidates (due to "clean" EG), Carbon Storage Infrastructure & CO2 carriers will play a key role in the CCS value chain

Well-to- Wake GHG Emissions

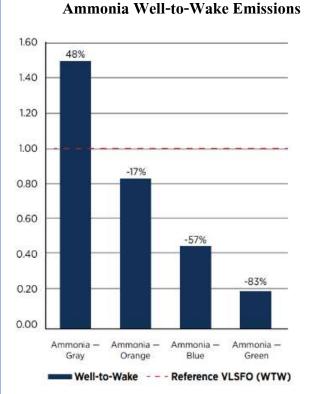


Figure 7: Normalized well-to-wake CO₃ emissions comparison for ammonia.

Source: ABS Report, dd 2021

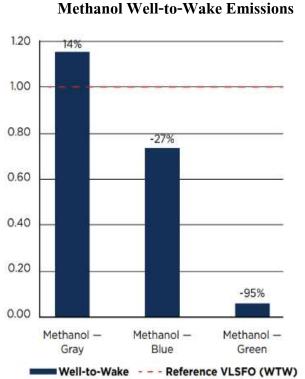
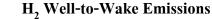
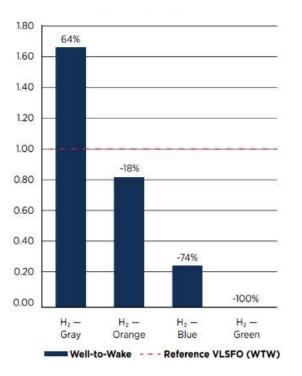




Figure 9: Normalized well-to-wake CO₂ emissions comparisons for methanol.

LNG Well-to-Wake Emissions

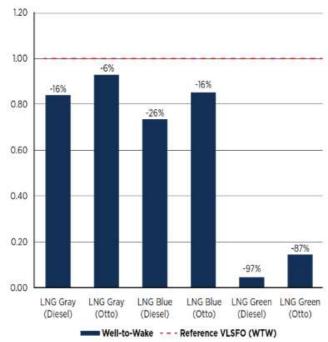


Figure 8: Normalized well-to-wake CO₂ emissions comparison for hydrogen. Figure 6 Normalized well-to-wake CO, emissions for gray and blue LNG.

Tank-to- Wake GHG Emissions

CO₂ Emissions comparison

CO₂ Emmisions with Reference to VLSFO

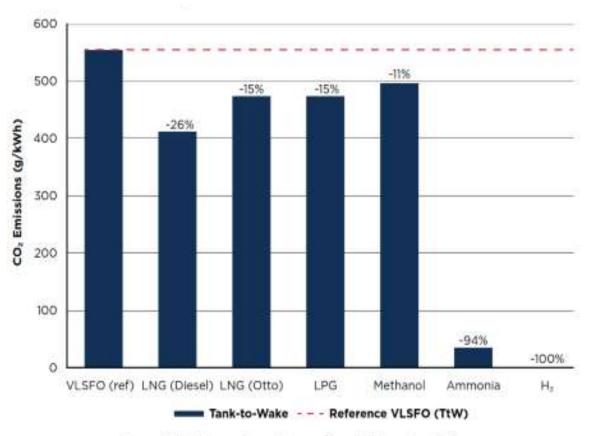


Figure 1 Tank-to-wake emissions of candidate marine fuels.

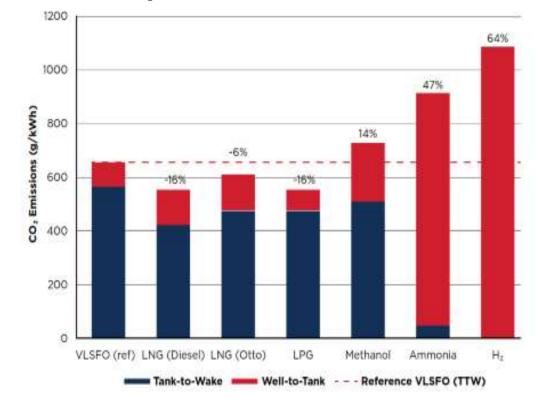


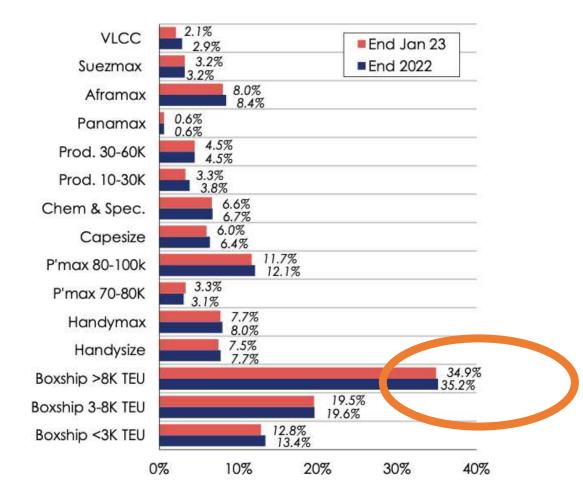
Figure 5 Life-cycle CO, emissions comparison between different fuels.

Shipyards Reality of today

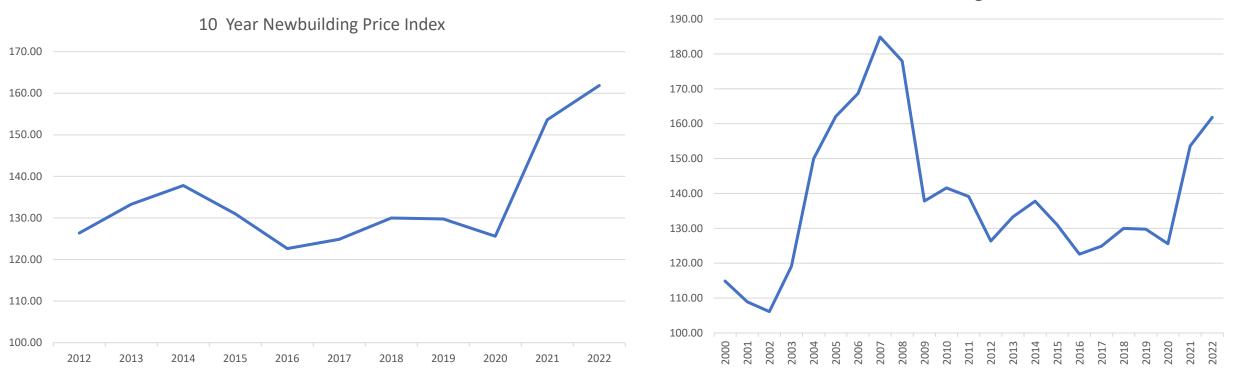
- i. Newbuilding Price Index
- ii. Orderbook
- iii. Trend Of Newbuilding Prices
- iv. World Fleet Age Profile
- v. Development of Active Chinese Shipyards

Orderbook by Vessel Type

Orderbook as % of Fleet (dwt)


VLCC	2.1%		End Jan 23	55
Suezmax	3.2%	-	End 2022	
Aframax	0.007			
Panamax	0.497	5		
Prod. 30-60K	4 507			
Prod. 10-30K	3.3%			
Chem & Spec.	1.107			
Capesize	4 007			
P'max 80-100k		11.7% 12.1%		
P'max 70-80K	3.3%			8
Handymax	7 70/			2
Handysize	7			
Boxship >8K TEU			34.9% 35.2%	
Boxship 3-8K TEU		19.5% 19.6%		
Boxship <3K TEU		12.8% 13.4%		
	0% 10%	20%	30% 40	-)%

Orderbook by Vessel Type


•

Orderbook as % of Fleet (dwt)

Newbuilding Price Index

20 Year Newbuilding Price Index

Trend of Newbuilding Prices (indicative assets)

Kamsarmax and MR NB Price (\$ in millions)

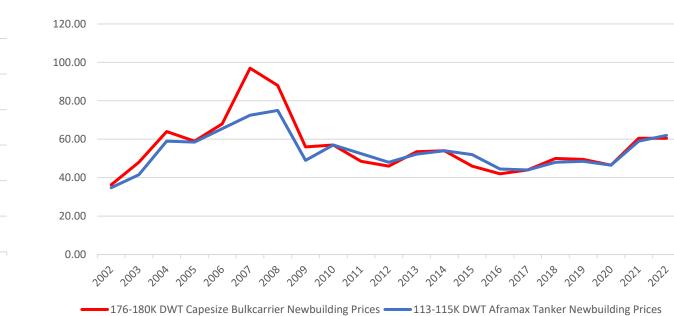
2008 2009 2010 2011 2012 2013 2014 2015

2007

60.00

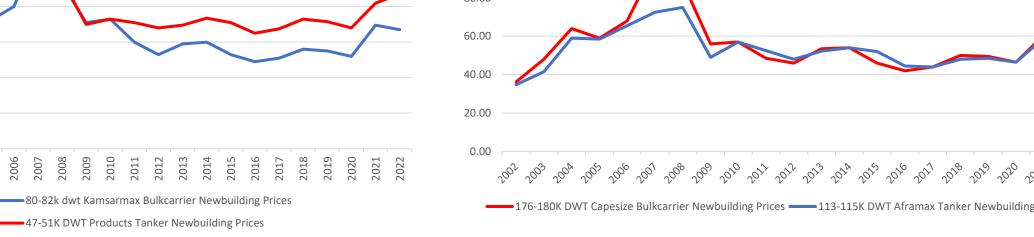
50.00

40.00


30.00

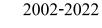
20.00

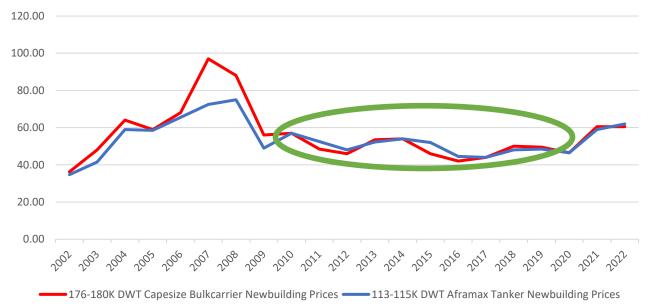
10.00


0.00

2002 2003 2004 2005 2006 2002-2022

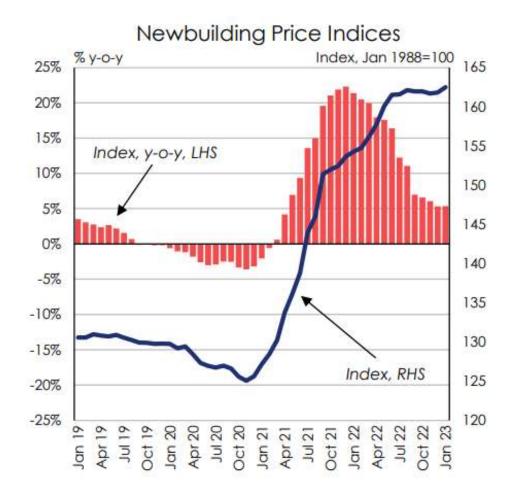
2002-2022


Cape and Aframax NB Price(\$ in millions)



Trend of Newbuilding Prices (indicative assets)

Capesize and Aframax -- NB Price(\$ in millions)



Ultra low inflationary environment

A New Pricing Reality?

(Certainly) Market Driven Forces and (some) Cost Driven Forces causing newbuilding prices to raise

Market Driven Forces

Simple.

Too much Demand, Few Berths.

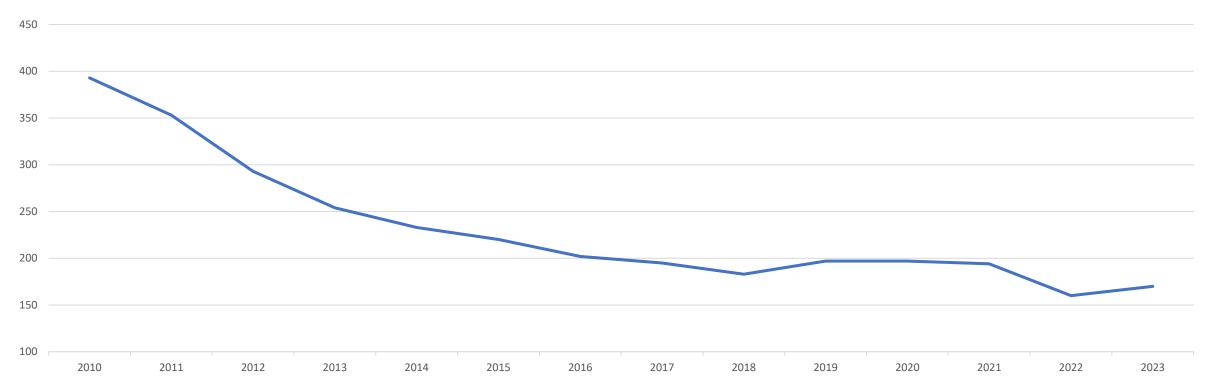
Market Driven Forces

Why Few Berths:

Reduced Shipyard Capacity
BOOM of orders in certan ship-types

a) Containerships
b) LNGCs
c) PCTCs

Market Spikes on ALL Sectors


Containers, Dry, PCTC, LNG, Tankers

Changes in Number of Active Chinese Shipyards

Number of Active Shipyards in China

2010-2023

Cost Driven Forces

- Inflation
- Demand Driven increase of
 - equipmetn cost
- Spike of Labour Cost
 - Steel Prices
 - Interest Costs

*what about the strong Dollar?

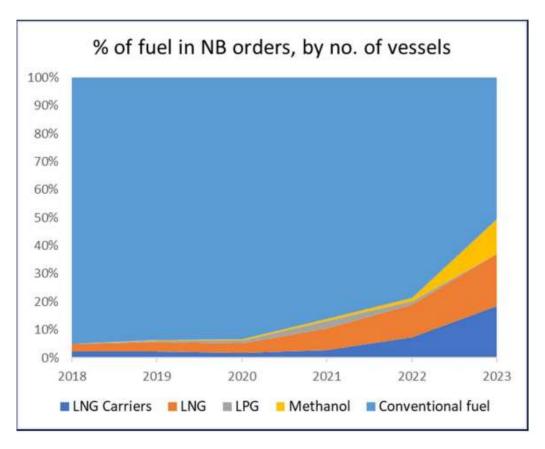
How Easy is it?

To manage the "Energy Transition" in a high cost environment ?

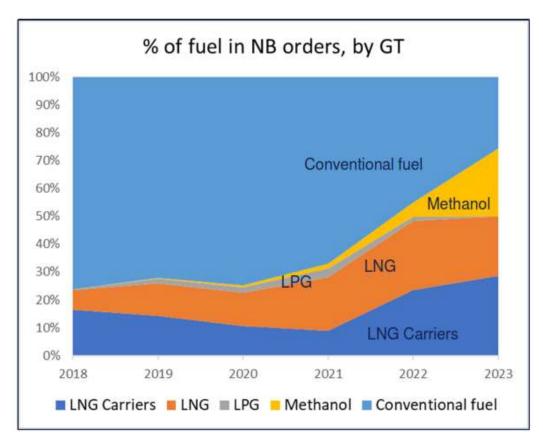
How Easy is it?

To manage the "Energy Transition" in a high cost environment ?

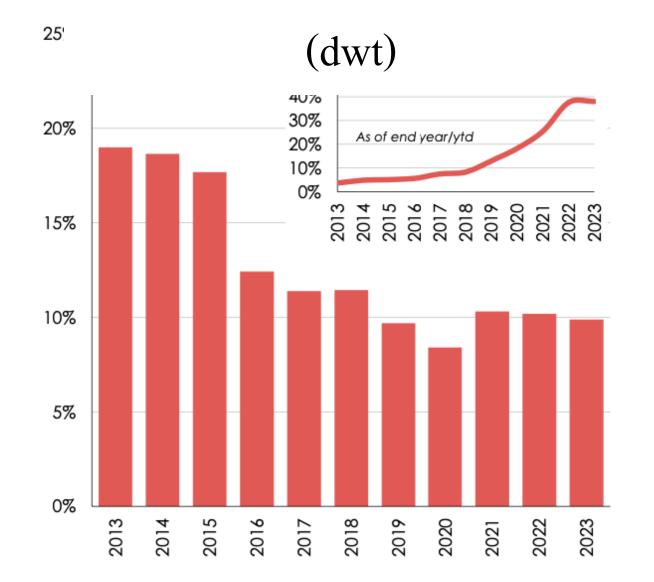
Not easy.


Yet its happening.

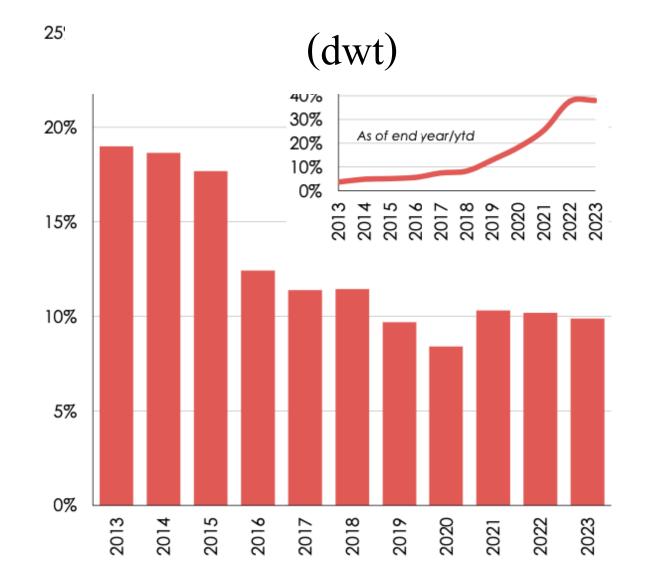
- Majority of newbuilding
 projects seek "readiness" of
 fuel transition
- Projects backed by charterers are growing in numbers
 - Shipyards working on
 - improving the economics


Newbuilding Orders with Alternative Fuels

No. of Vessels:


Source: DNV alternative fuels insight

By GT:


Alternative Fuel as % of Fleet

38% of new orders based on NON conventional fuel bunkering

Alternative Fuel as % of Fleet

38% of new orders based on NON conventional fuel bunkering

> *the number a bit based due to big number of LNG,PCTC, Containers but we keep it , to end with a

> > positive note

THANK YOU

Fedon Tomazos

Director

Cass Technava Maritime

