

The new 2023 IMO Strategy and Fuel Transition Pathways

27 February 2024 – 7th Annual Cyprus Capital Link Shipping Forum

Theo Kourmpelis, Strategic Business Partner, Lloyd's Register Group

Future GHG regulations overview

Upcoming GHG Regulations at a Glance

3

R

IMO 2023 Revised GHG Strategy

IMO 2023 Revised GHG Strategy – Levels of Ambition

WtW GHG Emissions (Mt CO2e)

Well-to-wake GHG emissions pathways implied by the revised (2023) strategy compared to the initial (2018) strategy, the emissions in 2008, and business-as-usual (BAU) emissions

Reach net-zero GHG emissions (on WtW basis) by around (close to) 2050 considering different national circumstances

Synergies with Existing Measures (such as CII) will be considered

Reducing GHG Emissions from Ships : Mid Term Measures

- Adoption from 2025
- On top of compliance measures (CII)
- A basket of measures comprising of:
 - Technical Element (Goal Based Marine Fuel Standard)
 - GHG emissions Pricing Mechanism
- The candidate economic elements will be considered via a comprehensive impact assessment

EU Fit for 55 Short and long term measures to make EU carbon neutral by 2050

In 2050, FuelEU Maritime Penalties cost 6 to 8 times more than ETS

enland

For instance

How would a technical element (GFS) would look like?

- WtW approach based on GHG Fuel Intensity
- Ramped or linear reduction?
- Final form would be furthered during ISWG GHG 16 (ref to ISWG-GHG 16-2-7/8/9) by EU 27
- How the technical element would be tied to the GHG pricing mechanism?

GHG Fuel Intensity Trajectory Comparison between IMO GFS and

Estimated Penalty Projections for Global Fuel Standard

Future Fuel Pathways

Methanol as Fuel – Pathways to Zero

Fuel Type	Feedstock type	Nature/Source	Process type	Energy used in the process	GHG Intensity for Various Methanol
Black/Grey Methanol (NG)	Natural Gas	Fossil	Steam Methane Reformation of Natural Gas and Methanol Synthesis	Grid Electricity	Green Methanol (rCO2 + rH2)
Black/Grey Methanol (Coal)	Coal	Fossil	Gasification of Coal and Methanol Synthesis	Grid Electricity	
Blue Methanol (SMR + CCS)	Natural Gas	Fossil	Steam Methane Reformation of Natural Gas with Carbon Capture & Storage and Methanol Synthesis	Grid Electricity	Blue Methanol (rCO2 + fH2) Blue Methanol (Bio)
Blue Methanol (Bio)	Mixed 1st, 2nd and 3rd Gen. feedstock	Biogenic	Reforming of Renewable Natural Gas (biomethane from Anaerobic Digestion) and Methanol Synthesis	Grid Electricity	Blue Methanol (SMR + CCS) Black/Grey Methanol (Coal)
Blue Methanol (rCO2 + fH2)	CO2 + H2	CO2: Direct Air Capture H2: Fossil Steam Methane Reformation	Methanol Synthesis	Grid Electricity	Black/Grey Methanol (NG)
Green Methanol (rCO2 + rH2)	CO2 + H2	CO2: Direct Air Capture H2: Renewable	Methanol Synthesis	Renewables/Nuclear	0 20 40 60 80 100 120 140 160 ■ GHGWtW (gCO2eq/MJ) Max values ■ GHGWtW (gCO2eq/MJ) Min values

Ammonia as Fuel – Pathways to Zero

LNG as Fuel – Pathways to Zero

Fuel Type	Feedstock typ	e Nature/Source	Process type	Energy used in the process	GHG Intensity for Various LNG Production Pathways
Fossil LNG (DF4S)	Natural Gas	Fossil	Standard LNG production including liquefaction	Grid Electricity	Green LNG (rCO2 + rH2)
Fossil LNG (DF2SLP)	Natural Gas	Fossil	Standard LNG production including liquefaction	Grid Electricity	$Blue(NG(CCS + rH^2))$
Fossil LNG (DF2SHP)	Natural Gas	Fossil	Standard LNG production including liquefaction	Grid Electricity	
					Bio LNG (DF2SHP)
Bio LNG (DF2SHP)	Mixed 1st, 2nd and 3rd Gen. feedstock	Biogenic	Thermochemical gasification followed by methanation and liquefaction	Grid Electricity	Fossil LNG (DF2SHP)
	CO2 - 112				Fossil LNG (DF2SLP)
Blue LNG (CCS + rH2)	CO2 + H2	CO2: Fossil Point Source Carbon Capture H2: from Renewable electricity	e methanation and liquefaction	Gnd Electricity	Fossil LNG (DF4S)
	CO2 + H3	CO2: Direct Air Capture		Grid Electricity/Renewables/Nuclear	0 20 40 60 80 100 120 14
Green LNG (rCO2 + rH2)		electricity	liquefaction and		GHGWtW (gCO2eq/MJ) Max values GHGWtW (gCO2eq/MJ) Min values

How Global Fuel Standard would look like – VLSFO

GFS Penalty High Scenario (USD) - VLSFO

- GHG reduction targets as per 2023 Revised IMO Strategy
- No adaptation BAU with VLSFO until 2050
- Penalties based on the assumption of 75t/day FOC for 270 days sailing

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

How Global Fuel Standard would look like – Blue Ammonia

\$35.00

- GHG reduction targets as per 2023 Revised IMO Strategy
- Use Blue Ammonia until 2050
- Penalties based on the assumption of 150t/day plus 15ton/day MGO Pilot for 270 days sailing
- Mean GHG intensity for Ammonia i.e. 61 gCO2/MJ
- Aggregate Penalty of 3.8m\$ from 2027-2050

GFS Penalty High Scenario (USD) - Blue Ammonia (CCS)

R

How Global Fuel Standard would look like – LNG DF (High Pressure)

- GHG reduction targets as per 2023 Revised IMO Strategy
- Use LNG DF High Pressure until 2050
- Penalties based on the assumption of 70t/day plus Pilot for 270 days sailing
- Fossil LNG GHG intensity i.e. 78 gCO2/MJ
- Aggregate Penalty of around 200m\$ from 2027-2050

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

An assessment should be made based on future fuel prices*

Thank you

Theo Kourmpelis, Lloyd's Register Group E: theo.kourmpelis@lr.org